
Eur. Phys. J. B 19, 25–36 (2001) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. The exactly solvable model of supersymmetric t−J chains (STJC) of correlated electrons with
next-nearest-neighbour (NNN) interactions is proposed and studied. The model with interactions between
nearest neighbours and NNN interactions in one chain can also be considered as a two-chain model with
zigzag-like coupling between the chains. The NNN interaction (coupling between chains) causes the onset
of additional Dirac seas for low-lying charge and/or spin excitations. These Dirac seas change the low-
energy (conformal) behavior of the model. The filling of those seas depends on the values of the NNN
coupling (interactions between chains), external magnetic field and applied voltage. We identify the new
ground state phases which appear due to the NNN as incommensurate ones. The NNN coupling in the
incommensurate phases induces spontaneous magnetization and/or spontaneous filling of the Dirac sea for
charge excitations (“spontaneous charge ordering”). The onset of this order implies a first order quantum
phase transition driven by the field with hysteresis phenomena.

PACS. 71.10.Hf Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model
systems – 71.27.+a Strongly correlated electron systems; heavy fermions – 71.10.Fd Lattice fermion models
(Hubbard model, etc.) – 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger
liquid, etc.)

1 Introduction

There has been recently considerable interest in low-
dimensional quantum correlated spin and electron sys-
tems. These systems, especially one-dimensional (1D),
manifest specific features of, e.g., magnetic behavior at
low temperatures, which are absent for the standard, con-
ventional 3D magnetic systems. Quasi-1D systems usu-
ally manifest 1D behavior for temperatures higher than
the temperature of the 3D magnetic ordering, but lower
than the maximal characteristic energy of the 1D inter-
action between particles. The origin of such specific fea-
tures is the enhancement of quantum and thermal fluctu-
ations of the 1D systems due to the peculiarities of the
1D density of states together with the quantum nature
of electrons. These fluctuations usually destroy any or-
dering of 1D systems at nonzero temperatures and most
often in the ground state (with only few exceptions).
However correlations usually exhibit power-law decays in
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the ground state of interacting 1D systems. This is why
such powerful methods of theoretical physics as perturba-
tion theories and mean-field approximation (of any kind)
are hardly applicable to strongly correlated 1D systems.
Thus low dimensional correlated electron and spin sys-
tems are perhaps the best known examples in which non-
perturbative methods like the renormalization group (RG)
theory, Bethe’s ansatz, bosonization, conformal field the-
ory, etc. have manifested their advantages. Moreover, dur-
ing the last decade a large number of new quasi 1D spin
and correlated electron compounds were created and ex-
perimentally studied. These compounds manifest proper-
ties of a single or several quantum chains weakly cou-
pled to each other at low temperatures [1,2]. This class of
compounds will probably provide new information about
the transition from 1D to 2D in quantum many-body
physics. It is very important, because 2D quantum many-
body physics has been a challenge for both theorists
and experimentalists since the beginning of the study of
low dimensional quantum systems. On the other hand,
the advantage of theoretical 1D studies is the possibility
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to obtain exact solutions by using non-perturbative meth-
ods, which are difficult to apply for higher-dimensional
quantum many-body models. The results of exact calcu-
lations of 1D models can serve as a testing ground for
the use of perturbative and numerical methods in more
realistic situations.

Recently several exactly solvable spin models [3–8]
were proposed, in which zigzag-like interactions between
two quantum spin chains were exactly studied using the
Bethe ansatz technique [9]. This method is widely known
by now, see, e.g. [10]. The Bethe ansatz method per-
mits to calculate exactly static characteristics of quantum
many-body systems. These results should be used for more
realistic systems such as coupled chains of strongly corre-
lated electrons. However it is not obvious how the interac-
tions between the chains will modify the known answers
for single correlated electron chains [11]. Mean-field like
approximations for the inter-chain couplings are not le-
gitimate, because the mean field approach in any version
already implies the existence of the (sometimes hidden) or-
der parameter. Also, it is unfortunately not clear whether
numerical simulations, which can be directly applied to
quantum many-body systems of rather small sizes (say,
at most several tens of sites) describe well the proper-
ties of the real systems, in which, even in quasi-1D, the
number of sites is at least of order of 108 or higher. On
the other hand, it must be admitted that some features of
exactly solvable 1D models are far from being observed ex-
perimentally. However these non-realistic features of the
1D models are known and simple to recognize. The be-
havior of multi-chain many-body quantum systems in an
external magnetic field is especially interesting, see for in-
stance [12–14], because of the possibility of experimental
observations due to recent progress in high magnetic field
measurements. On the other hand, they are important
due to very interesting, theoretically predictable effects,
which are possible to be realized in experiments, like phase
transitions in an external magnetic field. However, several
important issues are far from being solved in quantum
two-chain models. For example, it is not clear how the
changes of an external applied voltage (which plays the
role of a chemical potential) will affect properties of two
coupled 1D correlated electron chains. Here we point out
recent experimental observations, e.g., in α′-NaV2O5 [15]
and CaV3O7 [16]. They manifest the special behavior of V
magnetic ions, namely the “spontaneous charge ordering”.
This means that at sufficiently high temperature the va-
lence of V ions is homogeneous, i.e., equal to 4.5. However,
below a certain critical temperature some V ions reveal a
valence close to 4, while others are almost 5-valent [17].
Charge ordering was also observed in the heavy fermion
compound Yb4As3 [18]. It is also known that for a large
class of compounds, so-called magnetic Jahn-Teller sys-
tems [19,20], the properties can be described by a model
which manifests strong Hubbard repulsion and (similar for
simple lattices) exchange interactions between two bands
of electrons. In the limit of the Hubbard coupling being
much larger than the hopping integral, the second-order
perturbation theory gives rise to the Hamiltonian of the

t−J model [21]. There, the electrons hop between neigh-
boring sites of the lattice and manifest the spin-exchange
interaction when being nearest neighbors.

In this paper we propose a correlated electron model
which can be exactly solved by means of the algebraic
Bethe ansatz. We study the supersymmetric t−J chains
(STJC) with NNN exchange coupling and NNN hopping.
It can also be considered as two STJCs coupled to each
other by zigzag-like two-particle interaction and by four-
particle interactions. Supersymmetry (in contrast to the
standard t−J model [21]) appears due to fixing the value
of the exchange constant to J = 2 (in units of the hop-
ping integral). This value allows to obtain an exact Bethe
ansatz solution for a single STJC [22–24]. We shall show
that in the ground state our model exhibits several quan-
tum phase transitions (governed by an external magnetic
field and by the change of band-filling, due to an exter-
nal voltage). We determine them as the commensurate-
incommensurate phase transitions due to the NNN cou-
plings between correlated electrons. We shall also show
that the spontaneous magnetization and spontaneous fill-
ing of the charge band appear with first order phase tran-
sitions. To the best of our knowledge, this is the first ex-
act study in which the spontaneous “charge ordering” and
magnetization appear.

The paper is organized as follows: after the Introduc-
tion, in Section 2 we briefly describe the scheme of the al-
gebraic Bethe ansatz for the STSC with NNN interactions
(two-chain model). The ground state properties (with con-
formal field theory analysis of the low-energy behavior) of
the model are presented in Section 3. Concluding remarks
follow in Section 4.

2 Algebraic Bethe ansatz for coupled chains

2.1 Algebraic relations

The scheme of the quantum inverse scattering method [10]
(algebraic Bethe ansatz) for the STJC with only nearest-
neighbour couplings was presented in [25]. Here we briefly
sketch the main steps of that method for the model with
NNN interactions, which we want to study. One starts
with the R-matrix which depends on the spectral param-
eter u. For the STJC it has the form:

R(u) = [1− a(u)]Î + a(u)P̂ , (1)

where a(u) = u/(u+i), Î is the identity operator and P̂ is
the graded permutation operator [25]. “Grading” is con-
nected with the supersymmetry. The Hamiltonian of the
STJC can be represented by a quadratic form of fermionic
and bosonic currents (generators of the spl(2, 1) superalge-
bra). The coupling constants for these currents are equal
due to the supersymmetry [25]. Notice though different
signs in the nontrivial commutation relations between the
bosonic and fermionic generators. These signs are positive
for bosons and negative for fermions. In this grading one
can write Îγ,να,β = δα,βδγ,ν and P̂ γ,να,β = (−1)ενεβδα,νδγ,β,
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where εα equals 1 for fermions and 0 for bosons. The
R-matrices satisfy the Yang-Baxter relation

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) ,
(2)

where the lower indices denote the Hilbert spaces in
which the R matrix acts. We may consider spaces 1
and 2 as “quantum spaces” and 3 as “auxiliary space”.
The L-operators on site l (whose quantum space corre-
sponds to the Hilbert space of the lth site of the chain),
L(u) = P̂R(u), also satisfy the Yang-Baxter relations.
These L-operators are direct products of the two-particle
scattering matrix acting on the lth site of the chain and
the auxiliary space with unity operators for the Hilbert
spaces of the other sites. We define the monodromy ma-
trix as the ordered product of the L-operators

TL(u) = LL(u)LL−1(u) . . . L1(u) . (3)

By construction the monodromy matrices satisfy the
Yang-Baxter equation with the R-matrix. The supertrace
(with the positive contributions from the bosonic degrees
of freedom and negative ones from the fermionic coun-
terpart) of the monodromy matrix τ(u) = sTr[TL(u)] is
the transfer matrix of the associated 2D statistical ver-
tex problem. As a consequence of the Yang-Baxter re-
lations for monodromies, transfer matrices with different
spectral parameters mutually commute. This means that
the transfer matrix can serve as a generating functional
of the (infinite) number of conserved quantities, like the
Hamiltonian, the operator of the total momentum, etc.
For example, the Hamiltonian of the STJC with nearest-
neighbour couplings is usually constructed by taking the
first derivative of the logarithm of the transfer matrix at
zero spectral parameter

H2 = −i
∂ ln τ(u)
∂u

|u=0 − L = −
L∑
l=1

Pl,l+1 , (4)

where Pl,l+1 is the graded permutation operator for sites
l and l + 1. It has the form

Pl,l+1 = −
9∑

α,β=1

Kα,βJ
α
l J

β
l+1 , (5)

with Jα =
∑
j J

α
j being four fermionic and five bosonic

operators of the conserved currents (generators of the su-
peralgebra spl(2, 1)) [25]. The coupling coefficients are
(graded) supertraces (with positive terms for bosonic and
negative terms for fermionic parts) of the total conserved
currents, Kα,β = sTr(JαJβ). For convenience we write
down the non-vanishing elements of this matrix, namely
K1,2 = K2,1 = 2K3,3 = −K4,5 = K5,4 = −K6,7 = K7,6 =
−2K8,8 = K9,9 = −1. Bosonic generators are the unity
operator (α = 9, we keep the notations of [25]), the op-
erator of the total number of electrons N̂ , (α = 8), and
three operators of the projections of the total spin, S±,z
(α = 1, 2, 3), respectively. They form U(1) and SU(2) sub-
algebras ([Sz, S±] = ±S±, [S+, S−] = 2Sz) of spl(2, 1).

The fermion currents Q±1,2 (α = 4 ÷ 7) satisfy the anti-
commutation relations (see, e.g., [26])

{Q±1 , Q±2 } = ±S
±

2
, {Q±1 , Q∓2 } = ±−S

z ± N̂
2

· (6)

with other mutual anticommutators being zero. They sat-
isfy the commutation relations with the bosonic generators

[Sz, Q±l ] = ±Q
±
l

2
, [N̂ ,Q±l ] = (−1)l+1Q

±
l

2
,

[S∓, Q±l ] = Q∓l , [S±, Q±l ] = 0 , (7)

with l = 1, 2. This superalgebra can be written in compact
form as

[Jαl , J
β
l } ≡ Jαl J

β
l − (−1)εαεβJβl J

α
l

= fαβγ Jγl . (8)

In the basis where N̂ , S2 and Sz are diagonal, the non-
vanishing matrix elements of Q±1,2 are

〈S +
1
2
, S − 1

2
, σ ± 1

2
|Q±1 |S, S, σ〉 = ±

√
S ∓ σ

2
,

〈S, S, σ|Q±2 |S +
1
2
, S − 1

2
, σ ∓ 1

2
〉 =

√
S ± σ

2
· (9)

We choose S = 1
2 and can express the operators of the

conserved currents in terms of the standard electron cre-
ation and annihilation operators as N̂ =

∑
j(nj,+ +nj,−),

2Sz =
∑
j(nj,+ − nj,−), S± =

∑
j c
†
j,∓cj,±, Q+

1 =
∑
j(1−

nj,−)c†j,+, Q+
2 =

∑
j(1 − nj,+)cj,−, and Q−1,2 = (Q+

1,2)+.
Here nj,± = c†j,±cj,±, and c†j,± as usual create an electron
with z-projection of spin ± 1

2 at site j. The multipliers
(1− nj,∓) of fermionic conserved currents exclude double
occupations of each site, as it must be for the t−J model.
These generators can be easily expressed in terms of the
Hubbard operators, see, e.g., [27].

Now we propose to study the STJC with nearest and
NNN interactions (or in other words, two STJCs cou-
pled with zigzag-like two-particle interactions and four-
particle interactions to each other). For this purpose we
construct the Hamiltonian which consists of two parts,
H = H2 +AH4. Here H4 is the fourth “conservation law”
of the associated statistical problem. It is the third loga-
rithmic derivative of the transfer matrix of the associated
statistical model taken at zero value of the spectral pa-
rameter. This part of the Hamiltonian, which contains the
NNN interactions, can be written as [25]

H4 = − 2H2 +
L∑
l=1

Πl−1,l+1

− 2
L∑
l=1

KµνKαβKγδf
βγ
ε f δµω Jαl−1J

ε
l J

ω
l+1J

ν
l+2 (10)

with Πl−1,l+1 = Pl−1,lPl,l+1Pl−1,l being the graded per-
mutation operator between sites l − 1 and l + 1. Hence
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the total Hamiltonian can be considered as one for elec-
trons of one STJC with NNN interactions (proportional
to A), or for electrons of two STJCs with intra-chain cou-
pling constants A and inter-chain zigzag coupling (equal
to 1 − 2A here). By construction, the model is exactly
solvable. There exists additional four-site interaction be-
tween electrons. A similar four-site coupling has been al-
ready discussed in the literature in connection with the
spin-ladder systems [29] and with magnetic co-operative
Jahn-Teller systems [20]. Changing the value of the co-
efficient A we can study all possible situations from the
limit of a single STJC (with only nearest neighbor interac-
tions), A = 0, to the limit of two decoupled STJCs (or one
chain with the only NNN interactions) for A = 1

2 (notice,
though, that four-site interactions survive in this case).

2.2 Problem of eigenvalues

Now, our goal is to find the eigenfunctions and eigen-
values of the transfer matrix. Then the eigenvalues for
the conservation laws will be calculated from the eigen-
value of the transfer matrix. For definiteness we will work
in the Hilbert quantum space of the kth site, in which
ε1 = ε2 = 1 and ε3 = 0, i.e., FFB grading (representing
spin up and spin down electron states (fermionic) and a
hole state (bosonic) at each site). We choose the vacuum
state |0〉k as purely bosonic. One can represent the mon-
odromy matrix TL(u) as the 3 × 3 operator valued ma-
trix Âij with supertrace τ(u) = Â33 − Â11 − Â22. The
action of the monodromy matrix on the vacuum state
|0〉 = ⊗Lk=1|0〉k has triangular form (with the elements
12, 13, 21 and 23 of Âi,j being zero). Other non-diagonal
elements can serve as “creation operators” with respect to
our vacuum state, i.e., we can use the following form of
eigenstates |{u′}Nj=1|F 〉 =

∏N
j=1 Caj (u

′
j)|0〉F aN ...a1 , where

Caj = Â3,aj and aj runs over 1 and 2. The commutation
relations between the elements of the monodromy matrix
follow from the Yang-Baxter relations. Acting with the
transfer matrix on such a state produces the state mul-
tiplied by the eigenvalue (as a function of the spectral
parameter u and charge rapidities u′j) and some other “un-
wanted” terms, which we want to cancel. The cancellation
of the unwanted terms yields N conditions (Bethe ansatz
equations) for the parameters u′j.

The commutation relations for the “creation
operators”

Ca1(u′1)Ca2(u′2) = rb1a2
b2a1

(u′1 − u′2)Cb2(u′2)Cb1(u′1) (11)

involve some additional 4 × 4 “nesting” r-matrix, which
describes the spin degrees of freedom of our system. This
nesting matrix has the form

r(u) = [1− a(u)]Îs + a(u)P̂ s , (12)

with Îs and P̂ s being 4 × 4 unity and graded (ε1,2 =
1) permutation operators. Those r-matrices also mutually
satisfy the Yang-Baxter relations. For this nesting problem

we construct the eigenvalues for the nested transfer matrix
with F aN ...a1 serving as the basis for the nested eigenstates
|{λ}Mα=1〉 =

∏M
α=1C

s(λα)|0〉aN ...a1 = F aN ...a1 in a similar
way as above. The spin rapidities λα are determined from
the condition of the cancellation of the “unwanted” terms
in the eigenvector problem for the nesting transfer matrix
(in the spin subspace). Combining all the effects we write
down the eigenvalue for the transfer matrix of the STJC as

Λ(u) =
N∏
j=1

a−1(u′j − u)− aL(u)

×
( N∏
j=1

a−1(u′j − u)
M∏
α=1

a−1(u− λα)

+
M∏
α=1

a−1(λα − u)
)
. (13)

The Bethe ansatz equations for charge and spin rapidi-
ties have the form

N∏
k=1

a(u′j − λα) =
M∏
β=1
β 6=α

a(λβ − λα)
a(λα − λβ)

,

a(u′j)
L =

M∏
α=1

a(u′j − λα) . (14)

The energy of the nearest-neighboring part of the total
Hamiltonian (H2) is determined as the first logarithmic
derivative, and the energy of the next-nearest-neighbors’
part (H4) is determined as the third logarithmic derivative
of the eigenvalue of the transfer matrix (13) at u = 0. It
turns out that those parts of the total Hamiltonian com-
mute mutually and with the transfer matrix.

Let us consider the Bethe ansatz equations for peri-
odic boundary conditions for the sets of spin {λα}Mα=1

and charge {pj}Nj=1 rapidities (note that for continuum
models charge rapidities coincide with quasimomenta of
charge excitations). N and M denote the number of elec-
trons and the number of “down spins”, respectively. For
convenience, we use the shift u′j = pj − i

2 defining pj . The
structure of the Bethe ansatz equations for some other
strongly correlated electron models [11] is similar to equa-
tions (14) because the corresponding scattering processes
in the spin and charge subspaces possess similar symme-
tries. The Bethe ansatz equations are:

N∏
j=1

e1(λα − pj) = −
M∏
β=1

e2(λα − λβ)

eL1 (pj) =
M∏
β=1

e1(pj − λβ) , (15)

where L is the number of sites, and en(x) = (2x+in)/(2x−
in). In fact, the Bethe ansatz equations are the quantiza-
tion conditions for the rapidities. In the absence of inter-
actions and inhomogeneities in the system they coincide
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with the well-known ones for the quasimomenta of the free
particles in a box of length L. These rapidities parametrize
the eigenstates and eigenvalues of the Bethe ansatz-
solvable model in a well established way [10]. The energy
and the magnetization of the STJC with nearest and NNN
interactions have the simple form:

E =
N∑
j=1

(
1−A ∂2

∂p2
j

)
4

4p2
j + 1

− L ;

Mz =
N

2
−M . (16)

Equations (15) are written for the STJC in the Lai-
Schlottmann’s form (FFB grading) [22,24,25]. However,
for some purposes (see below) it will be more convenient
to use Sutherland’s form (BFF grading) [23]. We re-write
equations (15) largely following [28,25]:

eL1 (uj) = −
Nh+M∏
k=1

e2(uj − uk)
Nh∏
β=1

e−1
1 (uj − νβ)

1 =
Nh+M∏
k=1

e1(να − uk) , (17)

where Nh = L−N is the number of holes (non-occupied
sites), and

E = −
Nh+M∑
j=1

(
1−A ∂2

∂u2
j

)
4

u2
j + 4

+ L ;

Mz =
L−Nh

2
−M . (18)

It is easy to show that the two forms, equations (15) and
equations (17), are equivalent. For this purpose one can
consider the second set of the Bethe ansatz equations in
Sutherland’s form (17) as the roots of some polynomial
P (να) = 0 with

P (x) =
Nh+M∏
k=1

(x− uk −
i
2

)

−
Nh+M∏
k=1

(x− uk +
i
2

) . (19)

We separate the first Nh roots να of the Nh + M roots
of P (x) and label the remaining M roots by λα. Then we
have the factorization

P (x) = const.×
M∏
α=1

(x− λα)
Nh∏
β=1

(x− νβ) (20)

from which follows
M∏
α=1

e1(uj − λα)
Nh∏
β=1

e1(uj − νβ) =

P (uj + i/2)
P (uj − i/2)

= −
Nh+M∏
k=1

e2(uj − uk) . (21)

Then using this relation and the first set of equations (17)
we obtain the second set of equations (15), with uj = pj.

Next, the second equation of (15) can be re-written as
Q(pj) = 0 with the definition

Q(x) = (x+
i
2

)L
M∏
β=1

(x− λβ −
i
2

)

−(x− i
2

)L
M∏
β=1

(x− λβ +
i
2

) . (22)

As above, separating first the N roots pj of this polyno-
mial and labelling the remaining Nh +M roots by uk we
obtain the factorization

Q(x) = const.×
N∏
j=1

(x− pj)
Nh+M∏
k=1

(x− uk). (23)

From this we get

N∏
j=1

e1(λα − pj)
Nh+M∏
k=1

e1(λα − uk) =

Q(λα + i/2)
Q(λα − i/2)

= −
M∏
β=1

e2(λα − λβ) . (24)

Together with the second set of equations (17) for λα in
place of να it gives the first set of equations (15).

3 Ground state and low-temperature
properties

3.1 Ground state integral equations

Let us proceed along the well-known lines [10] to ob-
tain the characteristics of the eigenstates of our STJC
with NNN couplings in the thermodynamic limit, i.e., for
L,N,M → ∞ but with their ratios fixed. Instead of the
huge set of transcendental algebraic equations for the ra-
pidities one obtains a system of integral equations for the
energies of excitations and/or for the densities of the dis-
tributions of rapidities. (As usual, we take the logarithms
of equations (15, 17) and introduce the distributions of
the rapidities p ↔ pj , λ ↔ λα, u ↔ uj and ν ↔ νβ as
functions of the distributions of the logarithm’s branch
numbers in the limit L,N,M →∞.) In the ground state
this set of integral equations is finite. (For nonzero tem-
peratures it is infinite in the framework of the “string
hypothesis”, however such a set can be written in a fi-
nite form in the so-called “quantum transfer matrix” ap-
proach [30].) There are two integral equations for dressed
densities and two for dressed energies. Each of these equa-
tions corresponds to the charge and spin degrees of free-
dom of the system. As usual, the interaction “dresses” the
“bare” functions corresponding to the free or “driving”
terms of the integral equations. In Lai-Schlottmann’s form
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these equations read (notice, that in Lai-Schlottmann’s
construction the ground state pertains to the filling up of
the Dirac seas for unbound electron excitations, carrying
spin 1

2 and charge −e, and singlet pairs corresponding to
solutions to Eqs. (15) with pα = λα ± i/2 [24] carrying
zero spin and charge −2e):

ρc = a2 − a2 ? ρc − a1 ? ρs ,

ρs = a1 − a1 ? ρc (25)

and

εc(λ) = −2µ+ 2π
[
1−A ∂2

∂λ2

]
a2(λ)

−(a2 ? εc)(λ) − (a1 ? εs)(λ) ,

εs(p) = −µ− H

2
+ 2π

[
1−A ∂2

∂p2

]
a1(p)

−(a1 ? εc)(p) (26)

with ρc(λ) (ρs(p)) and εc(λ) (εs(p)) being dressed densities
(distributions of rapidities) and dressed energies for the
charge (spin) low-lying excitations. (The approach with
dressed energies of low-lying excitations is complementary
to the densities’ approach [10]. In such an approach the
formation of the ground state – the search of the Dirac
seas’ filling for the model – can be managed in the most
natural way.) In Lai-Schlottmann’s formulation charge
low-lying excitations are spin-singlet pairs and spin ex-
citations are unbound electron excitations [24]. The func-
tions an(x) are the Fourier transforms of exp(−n|ω|/2)
yielding algebraic functions, µ is the Lagrange multiplier
(chemical potential or an external applied voltage), H is
an external magnetic field, and ? denotes the convolution
a? b =

∫
a(x−y)b(y)dy. The limits of integrations are de-

termined from the conditions for the dressed energies to
be negative. Hence they pertain to the filling of the Dirac
seas (i.e., in the ground state all possible states with nega-
tive energies are occupied). In Sutherland’s representation
the integral equations have the form

ρsp = a1 − a2 ? ρsp + a1 ? ρh ,

ρh = a1 ? ρsp (27)

and

εsp(u) = −2π
[
1−A ∂2

∂u2

]
a1(u) +H

−(a2 ? εsp)(u) + (a1 ? εh)(u) ,

εh(ν) = µ− H

2
+ (a1 ? εsp)(ν) , (28)

with ρh(ν) (ρsp(u)) and εh(ν) (εsp(u)) being dressed densi-
ties and dressed energies for the holon (spinon) low-lying
excitations. Here (in Sutherland’s formulation) spin ex-
citations are spinons which carry zero charge and spin 1

2 ,
and holons which carry charge e. We emphasize again that
Lai-Schlottmann’s and Sutherland’s representations pro-
duce the same answers (but in a different form).

The integrals over the densities of rapidities (distribu-
tion functions) determine the number of electrons in the

system and the total magnetization. In Lai-Schlottmann’s
form they are:

N

L
=
∫

dpρs(p) + 2
∫

dλρc(λ) ;

Mz

L
=

1
2

∫
dpρs(p) . (29)

In Sutherland’s form we have:

Mz

L
=

1
2

[1−
∫

dνρh(ν)− 2
∫

duρsp(u)] ;

N

L
= 1−

∫
dνρh(ν) (30)

with the same limits of integrations as in equa-
tions (25–28).

Apparently, the Bethe ansatz integral equations for
densities of spin and charge rapidities do not depend on
the coupling parameter A neither in Lai-Schlottmann’s
form, nor in Sutherland’s form. This means that the distri-
butions of charge and spin rapidities depend on the NNN
interactions indirectly (via the limits of integrations which
are determined from the equations for the dressed ener-
gies, see below).

3.2 Properties of the ground state

Let us treat the properties of the ground state of the STJC
with the couplings. First consider Sutherland’s representa-
tion. For N = L the holons are absent, see equations (30).
In this case of the half-filled band equations (27, 28) de-
scribe the Heisenberg spin 1

2 chain, with nearest and NNN
couplings (or two spin chains coupled with the zigzag-like
interaction) [8]. The value of the chemical potential which
corresponds to half-filling of the STJC with NNN interac-
tions in the limit of zero magnetic field is equal to

µs = 2 ln 2 + 3Aζ(3) . (31)

The presence of the coupling A affects the value of the
chemical potential, compared to its value for A = 0,
µ = 2 ln 2. Hence, if one fixes the chemical potential at
its value for the STJC with the only nearest neighbor in-
teractions and switches on a coupling between the NNN
sites, the system will have less than one electron per site.
This means that some number of holons will have nega-
tive energies (Dirac sea) – “spontaneous charge ordering”.
Then, according to equations (30), there is nonzero (spon-
taneous) magnetization in such a correlated electron sys-
tem with NNN coupling. The limiting case of exactly one
electron sitting at each site of two coupled correlated elec-
tron chains naturally coincides with the two-chain spin 1

2
antiferromagnetic model, which has been studied previ-
ously [8].

The zero magnetic field behavior of the model with
N = L depends on the value of the coupling constant A
(for simplicity we restrict ourselves to the case A < 0;
A > 0 can be studied analogously). For A > Acr = −4/π2
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Fig. 1. The dressed energy of a spinon εsp for H = 0 as
a function of the rapidity u and the coupling parameter A.
Apparently at A < Acr some dressed energies become positive
for H = 0. One can see additional extrema for A < A1. H
plays the role of a chemical potential for spinons, changing the
zero level.

(H = 0) there is one Dirac sea for the low-lying exci-
tations (spinons). The presence of the coupling between
the spin chains (between the NNN in the representation of
a single chain) renormalizes the dressed energies of spinons
(hence, their Fermi velocities), but does not change the
distribution of rapidities of spinons. However, if the ab-
solute value of the coupling constant A is larger than the
critical value, out of the mentioned domain, (H = 0) the
eigenvalues of the energies of spinons are distributed in
two Dirac seas symmetrically placed around 0. We can re-
fer to this situation as for the onset of the band of “holes”
of spinons in the vicinity of zero, see Figure 1. This means
that there are four Fermi points (two for spinons and two
for “holes”) and two Fermi velocities. Hence the model
reveals a phase transition (of second order) at that crit-
ical value of the coupling constant. Note that according
to equations (30) the presence of “holes” in the distribu-
tion of the rapidities of spinons means nonzero magneti-
zation of the model with NNN interactions even in the
absence of an external magnetic field (spontaneous mag-
netization, i.e., the system is in a ferrimagnetic phase).
It also implies that if one decreased the magnetic field to
negative values in this phase, a hysteresis could take place.
Thus at zero magnetic field a first order phase transition
takes place.

Let us consider the situation for our correlated electron
model with one electron per site in an external magnetic
field. The dressed energy of spinons (as well as the disper-
sion law for spinons, i.e., the dependence of the dressed
energy of spinon εsp on its quasimomentum) for the val-
ues of the coupling constant A larger in absolute value
than some critical value A1 < 0 displays one minimum
(the spectrum is gapless and displays one maximum at
k = π/2, k being the quasimomentum of spinon), see Fig-
ure 2a. However for A < A1 there appear two minima and
one maximum in the dressed energy (two maxima and one
minimum at k = π/2, respectively, for the dispersion law

of the spinon), see Figure 2c. Actually at A = A1 the
minimum of the dispersion law disappears and maxima
merge into one at k = π/2, or, in other words, the max-
imum for εsp(u) disappears and two minima merge into
one at u = 0, see Figure 2b. The zero slopes of the disper-
sion law correspond to the van Hove singularities of the
bands of spinons (or their “holes” for the maximum of the
dressed energy). For any value of the magnetic field for
A > A1 (Fig. 2a) and if the value of the magnetic field
is less than some critical value Hc, for Acr < A < A1

(Fig. 2c) there is only one Dirac sea for spinons. On the
other hand, for H > Hc and Acr < A < A1 (Fig. 2c)
there are two Dirac seas for spinons. Hence, there is a
second order phase transition at H = Hc, which pertains
to the van Hove singularity of the empty band of “holes” of
spinons (corresponding to the maximum in the dressed en-
ergy). This phase transition is between the commensurate
and incommensurate magnetic phases, both with gapless
spinon excitations, see Figure 3. At the value of the ex-
ternal magnetic field Hs = 4(1 + 8A) the system passes
to the spin-saturation (ferromagnetic) phase at zero tem-
perature. It is a second order phase transition between a
phase with incommensurate correlations (due to the field
induced magnetization) and the ferromagnetic phase. For
A > Acr the low-field phase is commensurate in the limit
H = 0, for A < Acr the phase is incommensurate even
for H = 0. For A < Acr (see Fig. 2e) the phase transi-
tion is between a ferrimagnetic (incommensurate) and a
ferromagnetic phase, see Figure 3. In the ferromagnetic
state spinon excitations are gapped. The point A = A1

for H = Hc is a tricritical point (here Hs = Hc), see
Figure 2d. At this point the singularities of the thermody-
namic characteristics are proportional to (H−Hc)1/4 (not
to (H−Hc)1/2 as for other points on the Hc line). It turns
out that for A < Acr there is no symmetry H → −H, as it
must be for a system with spontaneous magnetic ordering.
Summarizing, there are three special lines in the ground
state magnetic field behavior of the STJC with the NNN
interactions (coupled two-chain STJC) with one electron
per site: H = Hs, which is the line of the second order
phase transition to the ferromagnetic state, H = 0 for
A < Acr, at which the first order phase transition takes
place, and H = Hc for Acr < A < A1, which is the line of
the second order phase transition between commensurate
and incommensurate magnetic states, see Figure 3.

The low temperature Sommerfeld theory manifests the
usual linear T behavior of the specific heat (and finite
zero-temperature magnetic susceptibility). At the lines of
the phase transitions the van Hove singularities of empty
bands of spinons produce

√
T behavior. At the tricritical

point the singularity is T 1/4.

3.3 Conformal behavior

Let us illustrate the above with the calculations of the
asymptotics for the correlation functions of spinons. As a
consequence of conformal invariance of (1+1)-dimensional
quantum systems, the classification of universality classes
is simple in terms of the central charge (conformal
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Fig. 2. The dressed energy of spinons εsp as a function of the rapidity u for different coupling parameters A < 0: Acr, A1 < A < 0
(a), A = A1 (b), Acr < A < A1 (c), A = Acr (d), A < Acr (e). Depending on the value of the magnetic field H there is one
Fermi sea in case (a), however up to two Fermi seas in case (c). The limiting case of a dressed energy function εsp(u) with just
one minimum and that with two minima and one maximum is shown in (b). Here all derivatives of order 1 to 3 vanish at u = 0.
In case (e) the coupling A is so strong that for all values of the field H (even H = 0) two Fermi seas are created. The limiting
case to (c) is shown in (d). Filled circles and filled squares denote “old” and “new” Fermi points for H 6= 0. Notice that for the
case (c) for H < Hc there are only two Fermi points (open circles).
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Fig. 3. Qualitative depiction of the ground state phase dia-
gram in the magnetic field–coupling parameter plane H − A.
The sections and limiting points |A| < |A1|, |A| = |A1|,
|A1| < |A| < |Acr|, |A| = |Acr|, |Acr| < |A| correspond to
cases (a–e) in Figure 2, respectively.

anomaly c) of the underlying Virasoro algebra [31]. The
critical exponents in a conformally invariant theory are
scaling dimensions of the operators within the quantum
model. They can be calculated considering the finite-size
(mesoscopic) corrections for energies and quasimomenta
of the ground state and low-lying excited states. Confor-
mal invariance formally requires all gapless excitations
to have the same velocity (Lorentz invariance). The
complete critical theory for systems with several gapless
excitations with different Fermi velocities is usually given
as a semidirect product of these independent Virasoro

algebras [32]. Here we briefly sketch the procedure and
write the results for the finite-size corrections to the
energy, following the standard procedure [32]. One can
see that for A > A1 or for Acr < A < A1, H < Hc the
conformal limit of our STJC with the NNN interactions
(coupled two-chain STJC) with one electron per site
pertains to one level-1 Kac-Moody algebra (one Wess-
Zumino-Novikov-Witten (WZNW) model of level 1 with
the conformal anomaly c = 1). The finite-size correction
to the energy is rather standard (cf. [32])

LEfs = −π
6
vF + 2πvF(∆l +∆r) , (32)

where vF is the Fermi velocity of the spinon and the
conformal dimensions ∆ of primary operators are (note:
the lower indices denote the conformal dimensions for
right- and left-moving quasiparticles, at the right and left
Fermi point ±B, respectively):

2∆l,r =
(
∆M

2z
± z∆D

)2

+ 2nl,r , (33)

where ∆M is an integer denoting the change of the num-
ber of particles induced by the primary operator, ∆D is
an integer (half-integer) denoting the number of transfered
particles from the right to the left Fermi point (backward
scattering processes), nl,r are the numbers of the particle-
hole excitations of right- and left-movers. The values for
the quantum numbers are restricted to ∆D = ∆M/2
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(mod 1). The dressed charge z = ξ(B) is the solution
of the (standard) integral equation [32]

ξ(u) +
∫

(B)

dva2(u− v)ξ(v) = 1 , (34)

taken at the limits of integration (these are the Fermi
points, symmetric with respect to zero). In this phase
there is only one region of integration over v. The dressed
charge is a scalar. The behavior of our two-chain model in
this phase in the conformal limit is rather standard [32].
The correlation functions decay asymptotically ∝ (x −
ivFt)−∆l(x+ivFt)−∆r . The choice of the appropriate quan-
tum numbers of excitations ∆M , ∆D and nl,r is deter-
mined for the leading asymptotics of correlators by taking
the possible numbers with smallest exponents. Note that
the dressed charge, and hence the exponents of the asymp-
totics do not depend on the coupling constant A in this
phase.

On the other hand, for A < Acr or for Acr < A < A1,
H > Hc the conformal limit of our STJC with the NNN
interactions (coupled two-chain STJC) with one electron
per site corresponds to the semidirect product of two level-
1 Kac-Moody algebras, both with conformal anomalies
c = 1, i.e., to two WZNW models both of level 1. The
Dirac seas (i.e., the possible spinons with negative en-
ergies) are in the intervals [−B+,−B−] and [B−, B+]
(minima in the distributions of rapidities). In fact the
valley in the density distribution for “particles” and the
maximum for “holes” are in one-to-one correspondence
with the maxima and minimum of the dispersion law for
spinons. The critical coupling constant Acr or critical Hc

in this language corresponds to the emergence of van Hove
singularities of the band of “holes”. The Fermi velocity of
“particles” is v+

F = (2πρsp(B+))−1ε′sp(u)|u=B+ , the Fermi
velocity of “holes” is v−F = −(2πρsp(B−))−1ε′sp(u)|u=B− .
The finite-size corrections to the energy for this case are

LEfs = −π
6

(v+
F + v−F )

+2π
(
v+

F (∆+
l +∆+

r ) + v−F (∆−l +∆−r )
)
, (35)

where the dispersion laws of “particles” and “holes” are
linearized about the Fermi points for each Dirac sea. The
conformal dimensions of primary operators are (upper in-
dices denote Dirac seas; lower indices denote right and left
Fermi points of each of these two Dirac seas:

2∆∓l,r =
[

(x−±∆M+ − x+±∆M−)
2 det x̂

∓ (z−±∆D+ − z+±∆D−)
2 det ẑ

]2

+ 2n∓l,r , (36)

where the sign “minus” (“plus”) between the terms in
square brackets corresponds to right- (left-) movers. Here
∆M± denotes the differences between the numbers of par-
ticles excited in the Dirac seas of spinons and “holes”,
labelled by upper indices. ∆D± denote the numbers of

backward scattering excitations, and n±l,r are the numbers
of the particle-hole excitations for right- and left-movers of
each Dirac sea (for spinons and “holes”). Note that ∆M±
and ∆D± are not independent. Their values are restricted
by the following connections: ∆M+ −∆M− = ∆M , and
∆D+ − ∆D− = ∆D, where ∆M and ∆D determine in
a standard way the changes of the total magnetization
and the total momentum of the system, respectively, due
to low-lying excitations. The same is true for the excita-
tions which change the total magnetization of the system:
there are only two independent of four such possible exci-
tations. This is a direct consequence of the fact that only
one magnetic field determines the filling of the Dirac seas
for “particles” and “holes”, or in other words, two Dirac
seas for spinons.

The dressed charges xik(Bk) and zik(Bk) (i, k = +,−)
are matrices in this phase. Dressed charges measure the
number of “bare” particles per dressed excitation. They
can be expressed by using the solution of the integral
equation [32,33]

f(u|B±) +
(∫ B+

−B+
−
∫ B−

−B−

)
a2(u− v)f(v|B±) =

a2(u−B±) , (37)

with [32]

zik(Bk) = δi,k + (−)k
1
2
(∫ ∞
Bi
−
∫ −Bi
−∞

)
dvf(v|Bk)

xik(Bk) = δi,k − (−)k
∫ Bi

−Bi
dvf(v|Bk) . (38)

Note that the dressed charges depend indirectly on the
values of the intra-chain (or the next to the nearest neigh-
bour) coupling constant A, andH only via the limits of in-
tegrations. In the first order approximation one can write
the solutions as xik(Bk) ≈ δi,k−(−)k

∫ Bi
−Bi dva2(v−Bk)+

. . . and zik(Bk) ≈ δi,k + (−)k(1/2)(
∫∞
Bi −

∫−Bi
−∞ )dva2(u−

Bk) + . . . The slopes of the dressed energies of “parti-
cles” and “holes” at Fermi points of the Dirac seas (Fermi
velocities) differ in general from each other. Therefore we
have a semidirect product of two algebras. Hence, in those
regions of A and H the dressed charges are 2 × 2 ma-
trices. It means that the conformal limit of our STJC
with the NNN couplings (two coupled STJCs) with one
electron per site corresponds to one or two WZNW theo-
ries depending on the values of the intra-chain coupling
and magnetic field. At the critical line Acr (or at Hc)
the Dirac sea of “holes” disappears as well as the com-
ponents of the dressed charge matrix x̂ (with the square
root singularities of the critical exponents for correla-
tion functions). Note that the dressed charge z becomes
z = (2x)−1 at the phase transition line Hc. This corre-
sponds to the disappearance of one of the WZNW mod-
els. Unfortunately it is impossible to obtain an analytic
solution to equations (37) in a closed form for the finite
NNN (intra-chain) coupling A. Naturally, in the limiting
case of purely nearest neighbour couplings (single STJC),
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A = 0, the solutions of equations (34, 37, 38) coincide
with the well-known ones [32]. The correlation functions of
the STJC with NNN couplings (two coupled STJCs) with
one electron per site decay algebraically in those phases
∝ (x−iv+

F t)
−∆+

l (x−iv−F t)
−∆−l (x+iv+

F t)
−∆+

r (x+iv−F t)
−∆−r

with the minimal exponents of possible quantum num-
bers of excitations ∆M±, ∆D± and n±l,r. We point out
once again that the same magnetic field plays the role
of an effective “chemical potential” for the Dirac seas of
“particles” and “holes”, or spinons of both Dirac seas.
Hence this choice of “minimal quantum numbers” is con-
strained. This drastically differs from the standard case of
two level-1 WZNW models for charge and spin excitations
in the STJC out of half-filling, because there the Dirac
seas for spinons and charge excitations are governed by
different Lagrange multipliers, namely, the magnetic field
and chemical potential, respectively. The above conformal
analysis is valid for the system out of phase transition lines
(i.e., H 6= 0,Hc,Hs for the above mentioned regions of A).
At the lines of phase transitions one of the Fermi velocities
becomes zero and the appropriate finite size corrections to
the ground state energy, which we discussed, disappear.

3.4 Charge sector

Now we consider the case of only charge excitations are
present in the ground state. This situation can be stud-
ied more naturally in the Lai-Schlottmann’s formulation.
Suppose the band of spin excitations (unbound electrons)
is empty. This can be achieved by the appropriate choice
of H. Hence all the electrons are bound into spin-singlet
pairs. We know that the creation of holes in the Dirac sea
for pairs starts from zero values of rapidities [24]. That
is why we can study the behavior of the dressed ener-
gies of the holes of pairs instead of the behavior of the
pairs themselves with the replacement εc(λ)→ −ε̃c(λ) in
equations (26). In this form the equation for the dressed
energies of holes of pairs equations (26) coincides (up to
the renormalization of the driving term) with the equa-
tion for the dressed energies of spinons equations (28).
The changes in the driving term are as follows – one has
to replace H by 2µ (pairs) and a1(u) by a2(λ). Hence,
up to these (quantitative) changes the analysis of the be-
havior of the charge excitations in this situation is simi-
lar to the previous one for the spin sector. This implies
that for A > Ac

1 (Ac
1 < 0) there is one Dirac sea for the

holes of singlet pairs. This phase corresponds in the confor-
mal limit to one level-1 WZNW theory. Here the dressed
charge for pairs is scalar. The exponents for the asymp-
totics of correlation functions and the dressed charge do
not depend on the coupling constant in this phase. For
Ac

1 > A > Ac
cr = −3ζ(3)/2 ln 2 our system can be either

in the commensurate gapless phase or in the incommen-
surate gapless phase, depending on the band filling. This
means that at some filling there is a phase transition be-
tween the commensurate and incommensurate phases (in
other words, if one applies an external voltage, there is
a critical value of that voltage, which corresponds to a
second order phase transition). Finally, for A < Ac

cr the

system is in a charged incommensurate phase. Here, the
soft modes of the elementary charge excitation take values
incommensurate with the Brillouin zone boundary. As a
consequence, two-point correlations show oscillations that
are not commensurate with the underlying lattice. We can
consider an external applied voltage as the Lagrange mul-
tiplier, controlling the filling of the Dirac sea(s) for pairs.
At the external voltage µ = 0 (zero chemical potential)
we expect spontaneous appearance of holes of pairs (i.e.,
“spontaneous charge ordering”) for A < Ac

cr with a hys-
teresis phenomenon (for negative values of µ). Thus this
phase transition is of first order. There are two Dirac seas
for the charge excitations (holes of pairs) in this phase, and
the conformal limit corresponds to the semidirect product
of two level-1 WZNW theories for charge excitations. At
the critical value of coupling constantAc

cr the second Dirac
sea is closed with the van Hove singularities (second order
phase transition). The same happens for Ac

cr < A < Ac
1

at the critical value of an external voltage. Note that the
above mentioned choice ofH excluding spin carrying exci-
tations of unbound electrons corresponds to negative val-
ues of the magnetic field for A < Acr. This means that for
the zero field case the state of the STJC with the NNN
interactions (coupled two-chain model) has nonzero mag-
netization (hence the zero temperature susceptibility di-
verges). For the nonzero values of the applied voltage the
analysis of the behavior of the low-lying charge excitations
is similar to the previous one for the spin excitations in the
nonzero external magnetic field. At the critical value of the
applied voltage µs = 2 ln 2+3Aζ(3) the second order phase
transition takes place. It corresponds to the van Hove sin-
gularity of the filled band of pairs (i.e., the system has one
electron per site). It turns out that the above conformal
analysis also corresponds to the case of the magnetic field
and applied potential differing from their critical values.
At the lines of phase transitions the appropriate Fermi
velocities become zero and the appropriate finite size cor-
rections disappear. Again, the low temperature Sommer-
feld expansion manifests the usual linear T behavior of the
specific heat (and finite zero-temperature charge suscep-
tibility). At the lines of the phase transition the van Hove
singularity of the empty bands produces

√
T behavior. At

the tricritical point we expect T 1/4 behavior as before.

3.5 Mixed spin and charge sectors

Now let us concentrate on the situation with Dirac seas for
spin and charge excitations present in the ground state.
The situation is very complicated. In principle one has
to solve two coupled integral equations. There the inte-
grations are over intervals with negative dressed energies
of low-lying spin and charge excitations. There are, gen-
erally speaking, two (one for each kind of excitations),
three or four Dirac seas, depending on the values of the
coupling constant, external magnetic field and applied po-
tential. Those situations pertain in the conformal limit to
the semidirect products of two, three and four Gaussians
(level-1 Kac-Moody algebras with central charges c = 1).
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Note that only two kinds of all those low-lying conformal
excitations are independent, because the filling of all Dirac
seas for charges is governed by only one external voltage,
and the filling of the Dirac seas for spin excitations is gov-
erned by one external magnetic field. At zero values of the
external magnetic field and/or applied voltage the system
can undergo first order phase transitions. The changes of
the values of the external magnetic field or applied voltage
drive the system to the ferromagnetic phase or to a phase
with exactly one electron per site with a second order
phase transitions at the critical lines. It is, unfortunately,
impossible to write down the analytic expressions for the
critical values Hs and µs. However, for some important
limiting cases we can obtain analytic answers in closed
form. For example, for the situation of the magnetic field
value being much smaller than the bandwidth for holons
(charge excitations), which is natural from the viewpoint
of the realization in experiment, we can calculate the value
of µs

µs = 2 ln 2 + 3Aζ(3) +
H2

4π2
+ . . . (39)

So, the critical value of the chemical potential depends in
general on the value of the external magnetic field. We can
also calculate the value of the transition field Hs to the fer-
romagnetic phase. It corresponds to the energy of spinon
at maxima and zero population of the spinon’s Dirac sea.
Equations (28) yield

Hs ≈ X + 2B(µ+ 2X) , (40)

where (B � 1) is the Fermi point for spinons

B2 = 2
µ− 2 ln 2− 3Aζ(3)

3ζ(3) + 45Aζ(5)
, (41)

and X = 4(1 + 8A). These equations mean that the crit-
ical value of the magnetic field depends on the external
voltage, or on the band filling. For zero values of the ex-
ternal magnetic field and/or external applied voltage we
expect the spontaneous filling of the band for the holes of
charge excitations and/or spontaneous magnetization for
large enough values of the coupling constant (at least for
A < Acr).

4 Summarizing remarks

In this paper we have proposed the exactly solvable model
of the supersymmetric t − J model with nearest and
next nearest neighbor couplings, or in other words, two
t−J chains coupled by zigzag-like interactions and also
by four-site couplings. This study was motivated for in-
stance by recent experiments on vanadates and low dimen-
sional magnetic Jahn-Teller compounds. In dependence
on the coupling constant we have obtained a rich variety
of ground state phases of the system. The next-nearest
neighbor coupling (intrachain coupling in the two-chain
language) of correlated electrons causes the onset of ad-
ditional Dirac seas for the charge and/or spin excitations.

These Dirac seas change the low-energy conformal behav-
ior of the model which strongly depends on the values of
the additional coupling, external magnetic field and ap-
plied voltage. We identify the new phases which appear
due to the next-nearest neighbor interactions (intra-chain
coupling for two chains) as incommensurate phases, be-
cause in those phases the soft modes of charge and/or spin
excitations take values incommensurate with the Brillouin
zone boundary. Hence there are incommensurate oscilla-
tions of two-point functions of spin and/or charge oper-
ators. The ground state (quantum) phase transitions be-
tween the commensurate and incommensurate phases are
of second order. Moreover, the coupling between the corre-
lated electron chains in the incommensurate phases causes
the onsets of the spontaneous magnetization and/or spon-
taneous filling of the Dirac sea for charge excitations
(“charge ordering”). The appearance of these spontaneous
values implies the first order phase transitions with hys-
teresis phenomena. To the best of our knowledge, the pre-
sented model is the first integrable model which exhibits
a variety of commensurate and incommensurate charge
and magnetic phases together with onsets of spontaneous
“charge ordering” and magnetization.

The effects of the coupling between the correlated elec-
tron chains, which we have studied in this paper, are of
the same nature as the incommensurate phases, which ex-
ist in a chain of noninteracting electrons (fermions with
spin) with nearest and next-nearest neighbour hoppings.
The main difference lies in the nature of the Dirac seas:
In the noninteracting case the Dirac seas appear for the
spin-up and -down noninteracting electrons, while in our
case of the correlated electron model Dirac seas pertain
to spin and charge low-lying excitations. However the na-
ture of phase transitions between commensurate and in-
commensurate phases are similar – van Hove singularities
of additional Dirac seas. We also point out that strong
correlations between electrons in the t− J model with
next-nearest neighbor couplings cause the emergences of
simultaneous “charge ordering” and spontaneous magne-
tization, which are naturally absent in the system of non-
interacting electrons with hopping between nearest and
next-nearest neighboring sites of the lattice.
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F. Steglich, M. Köppen, P. Gegenwart, T. Cichorek,
B. Wand, M. Lang, P. Thalmeier, B. Schmidt, H. Aoki,
A. Ochiai, Acta Phys. Polon. A 97, 1 (2000).

19. G.A. Gehring, K.A. Gehring, Rep. Progr. Phys. 38, 1
(1975).

20. K.I. Kugel’, D.I. Khomskii, Sov. Phys. Usp. 25, 231 (1982).
21. F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988).
22. C.K. Lai, J. Math. Phys. 15, 1675 (1974).
23. B. Sutherland, Phys. Rev. B 12, 3795 (1975).
24. P. Schlottmann, Phys. Rev. B 36, 5177 (1987).
25. F.H.S. Essler, V.E. Korepin, Phys. Rev. B 46, 9147 (1992).
26. M. Scheunert, W. Nahm, V. Rittenberg, J. Math. Phys.

18, 155 (1977).
27. S. Sarkar, J. Phys. A 24, 1137 (1991).
28. F. Woynarovich, J. Phys. C 16, 6593 (1983).
29. See, e.g., A.K. Kolezhuk, H.J. Mikeska, Phys. Rev. Lett.

80, 2709 (1998); Int. J. Mod. Phys. B 12, 2325 (1998);
Eur. Phys. J. B 5, 543 (1998).

30. For the review of the “quantum transfer matrix” approach,
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